16 research outputs found

    An efficient cluster-based service model for vehicular ad-hoc networks on motorways

    Get PDF
    Vehicular Ad-Hoc Networks (VANET) can, but not limited to provide users with useful traffic and environmental information services to improve travelling efficiency and road safety. The communications systems used in VANET include vehicle-to-vehicle communications (V2V) and vehicle-to-infrastructure communications (V2I). The transmission delay and the energy consumption cost for maintaining good-quality communications vary depending on the transmission distance and transmission power, especially on motorways where vehicles are moving at higher speeds. In addition, in modern transportation systems, electric vehicles are becoming more and more popular, which require a more efficient battery management, this also call for an efficient way of vehicular transmission. In this project, a cluster-based two-way data service model to provide real-time data services for vehicles on motorways is designed. The design promotes efficient cooperation between V2V and V2I, or namely V2X, with the objective of improving both service and energy performance for vehicular networks with traffic in the same direction. Clustering is an effective way of applying V2X in VANET systems, where the cluster head will take the main responsibility of exchanging data with Road Side Units (RSU) and other cluster members. The model includes local service data collection, data aggregation, and service data downloading. We use SUMO and OMNET++ to simulate the traffic scenarios and the network communications. Two different models (V2X and V2I) are compared to evaluate the performance of the proposed model under different flow speeds. From the results, we conclude that the cluster-based service model outperforms the non-clustered model in terms of service successful ratio, network throughput and energy consumption

    Identification of weathered troughs in granites for tunneling at Daya Bay reactor-neutrino experiment site

    Get PDF
    Abstract:Weathered troughs are frequently encountered in granites. They can cause problems to tunneling in the rocks and have to be properly addressed. The structures or spatial shapes of weathered troughs were seldom clarified in the past. In this paper, four weathered troughs are identified by means of geophysical exploration, core drilling, logging, and in-situ stress measurement at Daya Bay reactor-neutrino experiment site in Shenzhen, China. The weathered troughs are exposed on the ground or partially covered by grass and soils, which will threaten the safety of horizontal tunneling at a shallow depth. High electrical resistivity (HER) method is adopted for its feasibility and practicality, in combination with field geological observation, ultrasonic televiewer in boreholes and in-situ stress measurement. By comparing the HER values of completely decomposed to fresh rocks, it is indicated that the HER values of weathered troughs in natural state are 0.4–100 Ω·m, and the in-situ stress is abnormally lower than those at upper and lower layers. Field investigations show that the depths of the four weathered troughs are 30–182m, with bottom elevation over 10m. The volume of each weathered trough is mostly over 1×106 m3 in inverted conic form. The weathered troughs often occur in various kinds of landforms, such as ridges, gullies or gently dipping dish-like depression areas. Faults and boundaries of different granitic plutons as well as joints govern the formation, locations and strikes of these troughs under development

    Effects of Different Delignification and Drying Methods on Fiber Properties of Moso Bamboo

    No full text
    Bamboo has become an important kind of fibrous raw material in the world due to its fast-growing property and abundance of natural fiber. During the purification and utilization of bamboo fiber, the removal of lignin is vital and it is affected by the chemical treatment system and drying method. In this paper, the effects of three different delignification chemical systems and three drying methods (air drying, drying and freeze drying) on the physical and chemical properties of bamboo fiber were comparatively studied. The results prove that all three delignification techniques can effectively remove lignin from wood, and by utilizing peroxyformic acid and alkaline sodium sulfite, hemicellulose can be removed to a certain extent. With the selective removal of amorphous hemicellulose and lignin and the hydrolysis of cellulose molecular chains in amorphous regions, all three treatments contributed to an increase in the relative crystallinity of cellulose (ranging from 55% to 60%). Moreover, it was found that the drying methods exerted a certain influence on the mechanical properties of fiber. For instance, drying or air drying would improve the tensile strength of fiber significantly, approximately 2–3.5 times that of original bamboo fiber, and the tensile strength of the drying group reached 850–890 MPa. In addition, the alkaline sodium sulfite treatment had little effect on the thermal stability of bamboo fiber, resulting in high thermal stability of the prepared samples, and the residual mass reached 25–37%. On the contrary, the acetic acid/hydrogen peroxide method exerted great influence on the thermal stability of bamboo fiber, giving rise to a relatively poor thermal stability of prepared fibers, and the residual mass was only about 15%. Among the three drying methods, samples under air drying treatment had the highest residual mass, while those under freeze drying had the lowest. To summarize, the alkaline sodium sulfite method is more suitable for preparing bamboo fiber with higher tensile strength and thermal stability

    Fluorescence Properties of <i>Pterocarpus</i> Wood Extract

    No full text
    The water immersion of Pterocarpus wood produces strong blue fluorescence, which comes from the extract. The fluorescence contained in the extract is of interest for the identification of Pterocarpus wood. We conducted an investigation into the extraction solution of Pterocarpus wood and analyzed the mechanism of fluorescence in this species. Possible species of the fluorescent molecules are discussed based on the mixture. Liquid chromatography mass spectrometry (LC-MS) is used for an analysis of the extract, the obtained substances that may be fluorescent in Pterocarpus wood. In addition, the change in the fluorescence intensity with changes in the pH and concentration in the extract is also studied. The results show that the fluorescent molecule is quenched by aggregation (Aggregation-Caused Quenching; ACQ) and is unstable in over-acidic and over-alkaline conditions (especially acidic)

    Biochanin A Reduces Inflammatory Injury and Neuronal Apoptosis following Subarachnoid Hemorrhage via Suppression of the TLRs/TIRAP/MyD88/NF-κB Pathway

    No full text
    Inflammatory injury and neuronal apoptosis participate in the period of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Suppression of inflammation has recently been shown to reduce neuronal death and neurobehavioral dysfunction post SAH. Biochanin A (BCA), a natural bioactive isoflavonoid, has been confirmed to emerge the anti-inflammatory pharmacological function. This original study was aimed at evaluating and identifying the neuroprotective role of BCA and the underlying molecular mechanism in an experimental Sprague-Dawley rat SAH model. Neurobehavioral function was evaluated via the modified water maze test and modified Garcia neurologic score system. Thus, we confirmed that BCA markedly decreased the activated level of TLRs/TIRAP/MyD88/NF-κB pathway and the production of cytokines. BCA also significantly ameliorated neuronal apoptosis which correlated with the improvement of neurobehavioral dysfunction post SAH. These results indicated that BCA may provide neuroprotection against EBI through the inhibition of inflammatory injury and neuronal apoptosis partially via the TLRs/TIRAP/MyD88/NF-κB signal pathway

    A genome-wide gene-environment interaction analysis for tobacco smoke and lung cancer susceptibility

    No full text
    Tobacco smoke is the major environmental risk factor underlying lung carcinogenesis. However, approximately one-tenth smokers develop lung cancer in their lifetime indicating there is significant individual variation in susceptibility to lung cancer. And, the reasons for this are largely unknown. In particular, the genetic variants discovered in genome-wide association studies (GWAS) account for only a small fraction of the phenotypic variations for lung cancer, and gene-environment interactions are thought to explain the missing fraction of disease heritability. The ability to identify smokers at high risk of developing cancer has substantial preventive implications. Thus, we undertook a gene-smoking interaction analysis in a GWAS of lung cancer in Han Chinese population using a two-phase designed case-control study. In the discovery phase, we evaluated all pair-wise (591 370) gene-smoking interactions in 5408 subjects (2331 cases and 3077 controls) using a logistic regression model with covariate adjustment. In the replication phase, promising interactions were validated in an independent population of 3023 subjects (1534 cases and 1489 controls). We identified interactions between two single nucleotide polymorphisms and smoking. The interaction P values are 6.73 × 10 −6 and 3.84 × 10 −6 for rs1316298 and rs4589502, respectively, in the combined dataset from the two phases. An antagonistic interaction (rs1316298-smoking) and a synergetic interaction (rs4589502-smoking) were observed. The two interactions identified in our study may help explain some of the missing heritability in lung cancer susceptibility and present strong evidence for further study of these gene-smoking interactions, which are benefit to intensive screening and smoking cessation interventions

    Additional file1: Table S1. of Whole blood microRNA markers are associated with acute respiratory distress syndrome

    No full text
    Study required risk factors for ARDS on admission to ICU [6]. Table S2. Demographic characteristics of MEARDS miRNA study cohorts (n = 529). Table S3. MicroRNA candidate screening in discovery study. Table S4. Diagnostic performance of sepsis, pneumonia, and miRNA biomarkers for ARDS. Figure S1. MEARDS cohort recruitment process. Figure S2. Sample A (A) and sample B (B) from two patients both showed strong correlations between duplicate samples on different chips and different profiling day in discovery study (R 2 = 0.99), indicating that detectable miRNAs (after meeting quality control criteria) are experimentally consistent. Figure S3. Sample duplicate consistency between discovery and validation phase (after meeting quality control criteria). The figure showed high correlation (R 2 = 0.90) between miRNA expression in discovery study and validation study. Figure S4. Gene set enrichment analysis of 22 candidate miRNAs. Seventeen of them found to be significantly overrepresented (FDR q < 0.001) in ARDS vs at-risk control. miR-181a, miR-92a, and miR-424 are among the top enrich score miRNAs. Figure S5. Post hoc power calculation of logistic regression was calculated using G power (3.1.9). Under the null hypothesis, we assume the odds ratio equals to 1.5 with total sample size of 156; thus, we have a power (1 − β error probability) of 0.79 to detect differentially expressed miRNAs. (DOCX 125 kb
    corecore